工业4.0:离散制造业智能工厂的五大特征

日期: 2016-04-11  来源:51模材网  点击数:  

  最近几年,欧美国家最早针对流程工业提出了“智能工厂”的概念。流程工业智能工厂由商业智能、运营智能、操作智能三个层次组成,由于自身的自动化水平较高,因此实施智能工厂相对比较容易。与流程工业相比,离散制造业首先在底层制造环节由于生产工艺的复杂性,如车、铣、刨、磨、铸、锻、铆、焊对生产设备的智能化要求很高,投资很大。特别是装备制造业、家电、汽车、机械、模具、航空航天、消费电子等产品大都要求产品智能化,设计智能。

  因此,在中国制造2025及工业4.0信息物理融合系统CPS的支持下,离散制造业需要实现生产设备网络化、生产数据可视化、生产文档无纸化、生产过程透明化、生产现场无人化等先进技术应用,做到纵向、横向和端到端的集成,以实现优质、高效、低耗、清洁、灵活的生产,从而建立基于工业大数据和“互联网 ”的智能工厂。

工业4.0智能工厂

  特征一:生产设备网络化,实现车间“物联网”

  工业物联网的提出给“中国制造2025”、工业4.0提供了一个新的突破口。物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。传统的工业生产采用M2M(Machineto Machine)的通信模式,实现了设备与设备间的通信,而物联网通过Thingsto Things的通信方式实现人、设备和系统三者之间的智能化、交互式无缝连接。

  在离散制造企业车间,数控车、铣、刨、磨、铸、锻、铆、焊、加工中心等是主要的生产资源。在生产过程中,将所有的设备及工位统一联网管理,使设备与设备之间、设备与计算机之间能够联网通讯,设备与工位人员紧密关联。

  如:数控编程人员可以在自己的计算机上进行编程,将加工程序上传至DNC服务器,设备操作人员可以在生产现场通过设备控制器下载所需要的程序,待加工任务完成后,再通过DNC网络将数控程序回传至服务器中,由程序管理员或工艺人员进行比较或归档,整个生产过程实现网络化、追溯化管理。

  特征二:生产数据可视化,利用大数据分析进行生产决策

  “中国制造2025”提出以后,信息化与工业化快速融合,信息技术渗透到了离散制造企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在离散制造企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,离散制造企业也进入了互联网工业的新的发展阶段,所拥有的数据也日益丰富。离散制造企业生产线处于高速运转,由生产设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,对数据的实时性要求也更高。

  在生产现场,每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备开机率、主轴运转率、主轴负载率、运行率、故障率、生产率、设备综合利用率(OEE)、零部件合格率、质量百分比等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。

  一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造企业改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

41.9K

最新文章